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1 Introduction

In Paul Seidel’s thesis, he showed that if a compact Kahler manifold admits an
ordinary double point, then it contains a lagrangian sphere. While Stenzel[1]
contructed a Calabi-yau metric on cotangent bundle of n-dimensional sphere
and the zero section of it is special lagrangian with respect to the metric. Those
two facts motivate us to ask whether it’s true for Calabi-yau manifold with
ordinary double point to contain a special lagrangian sphere. We’re going to
show that it’s true for Kummer surface. The reason why it’s comparably easy
for Kummer surface is that we can deform Eguchi-hanson metric, which is a
special case of Stenzel metric, by a small amount to a new complete calabi-yau
metric. And the ”difference” between those two metrics is controlled. Thus we
can apply Mclean’s theorem to show that zero section is still special lagrangian
with respect to the calabi-yau matric on Kummer surface. We’ll start from
technical materials which will be used in deforming Eguchi-hanson metric, and
then follow Simon Donaldson’s gluing argument[2] and then show the existence
of special lagrangian sphere.

2 Technical background[2]

The section is aimed for preparation of deforming the Eguchi-hanson metric on
Kummer surface.[2]

2.1 Analysis

We want to apply the theory of translation-invariant elliptic operators on cylin-
ders M ×R, where M is a compact Riemannian (n− 1)-manifold. Consider ∆
defined to be the standard Laplace operator of the product metric and we use
the sign convention that ∆ is a positive operator. For p > 1 and integers k ≥ 0,
define Sobolev spaces Lpk on M × R by taking the completion of the smooth
compactly supported functions under the usual norm. Then we have

Proposition 1 For any p, k the map ∆ + 1 : Lpk → Lpk is an isomorphism.
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Take p = 2. Assuming standard results about the compact manifold M .
Given a smooth function ρ of compact support we want to solve the equation
(∆ + 1)f = ρ. We can do this by separation of variables, writing ρ =

∑
ρλ(t)φλ

where φλ is an orthonormal basis of eigenfunctions of the Laplacian ∆M on
M—so (∆ + 1)φλ = (1 + λ)φλ. We seek a solution f =

∑
fλ(t)φλ, so we need

to solve the ODE’s

−d
2fλ
dt2

+ (1 + λ)fλ = ρλ,

which can be done by standard elementary arguments. The solutions have
exponential decay and integration-by-parts is valid, so that∫ ∞

−∞

(
dfλ
dt

)2

+ (1 + λ)f2
λ dt =

∫ ∞
−∞

fλρλ dt.

Then the Cauchy-Schwartz inequality implies that a∫ ∞
−∞

f2
λ dt ≤

∫ ∞
−∞

ρ2
λ dt,

and summing over λ we see that the L2 norm of the solution f is bounded by
that of ρ. Repeated integration by parts shows that for any k there is a constant
Ck such that we have ‖f‖L2

k+2
≤ Ck‖ρ‖L2

k
and the statement of the proposition

(for p = 2) is an easy consequence. (The integration-by-parts argument is made
simpler if one uses the fact that on the compact manifold M the L2

k norm is
equivalent to

‖g‖(k) =
∑

(λ+ 1)kg2
λ = 〈g, (∆ + 1)kg〉,

for a function g =
∑
gλφλ.)

With the particular operator ∆ + 1 the statement of the Proposition holds
for very general class of manifolds, and can be proved in different ways. The
advantage of the separation of variables approach above is that it extends easily
to other elliptic operators on cylinders.

To tackle nonlinear problems we need Sobolev embedding theorems. These
are easy to state.

Proposition 2 If k > l, k−n/p > l−n/q and p < q then there is a continuous
embedding Lpk ⊂ Lql . If k − n/p > 0 then there is a continuous embedding
Lpk ⊂ C0.

Again, the proofs are not difficult, assuming facts about compact manifolds.
Let us just consider the cases which will suffice in our application, when n = 4.
Then we want to establish embeddings L2

1 ⊂ L4 and L2
3 ⊂ C0. For the first we

use the fact that for functions f on a “band” M × [0, 1] we have an inequality

‖f‖L4 ≤ C‖f‖L2
1
.
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(This follows from the usual theory for compact manifolds by considering the
“double” of the band, i.e. M × S1.) Now decompose the cylinder M ×R into
a union of copies Ωn = M × [n, n+ 1] of the band. If f is a function on M ×R
we get

‖f‖4L4 =
∑∫

Ωn

f4 ≤ C4
∑(∫

Ωn

|∇f |2 + f2

)2

≤ C4

(∫
M×R

|∇f |2 + f2

)2

,

using the simple fact that for any an ≥ 0 we have∑
a2
n ≤

(∑
an

)2

.

The inclusion L2
3 ⊂ C0 is even easier–we simply multiply by a standard cut-

off function supported in a band. A consequence of these two embeddings is
that we have a bounded multiplication map L2

3 × L2
3 → L2

3.

Now we move on to consider a Riemannian manifold X with cylindrical ends,
so the complement of a compact subset of X is isometric to a finite disjoint union
of half-cylinders. Mi × (0,∞). We consider an operator � on X of the form
∆X +V where V is a smooth function, equal to 1 on each of the ends. We write
H� for the set of functions f in L2 with �f = 0.

Proposition 3 1. H� ⊂ Lpk for all p, k.

2. For any p, k the operator � : Lpk+2 → Lpk is Fredholm with kernel H� and
image the orthogonal complement (in the L2 sense) of H�.

In fact functions in H� have exponential decay, along with all their derivatives,
on the ends of the manifold. Usually one does not encounter manifolds with
exactly cylindrical ends but rather ends which are asymptotic to cylinders (as
Riemannian manifolds). The extension to this case is completely straightfor-
ward.

Now suppose we have a pair X1, X2 of such Riemannian manifolds with
tubular ends. For simplicity of language, suppose that each has just one end
and that the “cross-section” is the same compact manifold M . Given T > 0 we
form a compact manifold X1]TX2 by gluing the hypersurface corresponding to
M×{T} in the end of X1 to that in the end of X2, in the obvious way. The result
is a Riemannian manifold which contains an isometric copy of M×(−T, T ). Now
suppose we have functions V1, V2 on X1, X2,as above. Then we get a function
V and an operator � on X1]TV2 in the obvious way. (We use the same symbol
� to denote the operators on any of the manifolds involved.) The basic fact is

Proposition 4 Suppose that � is invertible on each of X1, X2. Then for any
p, k there is a constant Cp,k and a T0 such that if T ≥ T0 there is a right inverse
P to � on X1]TX2 and

‖Pρ‖Lp
k+2
≤ Cp,k‖ρ‖Lp

k
.
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The crucial point here is that Cp,k does not depend on T , once T is suffi-
ciently large.

The proof of this Proposition is simple. We fix a partition of unity γ1+γ2 = 1
on X1]TX2with ∇γi supported in a standard band of width 1 in the “middle”
of the cylindrical region. Then we choose function β1, β2 so that βi = 1 on the
support of γi but βi is supported in the region which can be considered, by an
obvious stretch of langauge, as being contained in Xi. We choose βi so that
∇βi is O(T−1) and similarly for higher derivatives. Let Pi be the inverse to �
over Xi and set

P0ρ = β1P1(γ1ρ) + β2P2(γ2ρ),

where again we stretch notation to move functions between Xi and X1]TX2.
Then

�P0ρ = ρ+
∑
i

2∇βi∇Pi(γiρ) + ∆βiPi(γiρ),

and
‖�P0ρ− ρ‖Lp

k+2
≤ CT−1‖ρ‖Lp

k
,

so when T is large enough we get a genuine right inverse P0 ◦ (�P0 − 1)−1 and
the estimate of the operator norm of P is immediate.

The Sobolev embedding theorems on the infinite cylinder imply correspond-
ing statements on X1]TX2, with constants independent of T .

2.2 Geometry

We recall some very standard facts about Kahler geometry, the Kummer con-
struction. and the Eguchi-Hanson metric.

Let Z be a complex manifold of complex dimension 2. Giving a Hermitian
metric on Z is the same as giving a positive form of type (1, 1). The metric
is Kahler if this form is closed. Write D for the operator 2i∂∂ mapping (real)
functions to (real) forms of type (1, 1). If ω is a Kahler form the Laplacian of
the metric is given by

∆ωf = (Df ∧ ω)/ω2,

where “division” by the volume form ω2 has the obvious meaning. Suppose that
χ is a nowhere-vanishing holomorphic 2-form on Z. A Kahler metric is Calabi-
Yau (i.e. Ricci-flat) if ω2 = λχ ∧ χ, for some λ > 0. If ω0 is one Kahler form
and φ is a function then ωφ = ω0 + Dφ is Kahler, provided it is positive (and
positivity is an open condition). So we want to solve the Calabi-Yau equation

(ω0 +Dφ)2 = λχ ∧ χ,

with the side condition that ω0 +Dφ > 0.
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Now we turn to the Kummer construction. Let T 4 = C2/Λ be a complex
torus. The map z 7→ −z on C2 induces an involution of T 4 with 24 = 16 fixed
points. The quotient X is an orbifold with 16 singular points, each modelled
on the quotient of C2 by ±1. We write X for the complement of the singular
points in X. The constant holomorphic 2-form dz1dz2 is preserved by by the
involution and so descends to a holomorphic form on X.

Consider the map (z1, z2) 7→ (z2
1 , z1z2, z

2
2) ∈ C3. This induces a bijection

between C2/± 1 and the singular affine quadric in C3 defined by the equation
v2 = uw. We blow-up the origin in C3 and take the proper transform of this
affine surface in the blow-up. The result is a smooth surface Y , the resolution
of this singularity. However all we really need to know is that Y is a complex
surface which, outside a compact set K ⊂ Y is identified with the quotient
(C2 \ B4)/ ± 1 and that the holomorphic form on this quotient extends to
a nowhere-vanishing form on Y . Making this construction at each of the 16
singular points of X we get a compact complex surface Z, with a nowhere
vanishing holomorphic form.

Now our gluing problem will be to find a Calabi-Yau metric on Z starting
with standard building blocks: metrics on X and Y . (Of course really we have
16 copies of Y .) The metric, ωX , on X that we need is just the flat one, but we
also need a Calabi-Yau metric on Y . This is the Eguchi-Hanson metric, which
we will now recall.

Go back to C2 and write ρ = r2 = |z1|2 + |z2|2. Consider a Kahler metric of
the form Dψ, where ψ = F (ρ). The Calabi-Yau equation becomes

det

(
F ′ + |z1|2F ′′ F ′′z1z2

F ′′z2z1 F ′ + |z1|2F ′′
)

= 1,

which is (F ′)2 +ρF ′F ′′ = 1. The solution F (ρ) = ρ corresponds to the standard
Euclidean metric Ω. Up to re-scalings there is just one other solution which we
can take to be given by

F ′(ρ) =
√

1 + ρ−2.

There is no need to integrate this explicitly, all we need is that, choosing the
constant of integration suitably) we have F (ρ) = ρ+G(ρ) where, for ρ > 1 G(ρ)
has a convergent expansion a1ρ

−1 + a2ρ
−2 + . . . So we get a Calabi-Yau metric

Ω +DG on C2 \ {0} where G = a1r
−2 + a2r

−4 + . . . for r > 1. This metric has
a singularity at the origin but one can check that when we pass to the quotient
and its resolution Y we get a smooth Calabi-Yau metric ωY . Choose a positive
function rY on Y which is equal to r =

√
|z1|2 + |z2

2 on Y \K.

To set the scene for the gluing problem, fix a cut-off function β on R, with
β(s) = 0 for s ≤ 1/2 and β(s) = 1 for s ≥ 1. Introduce a (large) parameter R
and define a function βR on Y by βR = β(R−1/2rY ). Put

ωR,Y = ωY −D(βRG).

5



Then, by construction, ωR,Y equals the Eguchi-Hanson metric ωY when

rY ≤
√
R/2 and equals the flat metric Ω when rY ≥

√
R. The derivatives of G

satisfy
|∇jG| = O(r−2−j

Y ).

(Here we measure the size of derivatives with respect to the Euclidean metric.)
So on the annulus

√
R/2 ≤ rY ≤

√
R we have |∇j(G)| = O(R−1−j/2). The

derivatives of βR satisfy (by scaling)

|∇kβR| = O(R−k/2),

so any product ∇jβR∇kG is O(R−1−(j+k)/2). Since D(βRG) is a sum of such
products with j + k = 2 we see that

|D(βRG)| = O(R−2).

It follows, first, that ωR,Y is positive (for large enough R) so it is a Kahler
metric. Second, we can write

ω2
R,Y = (1 + η)−1ω2

Y

where η is supported on this annulus and |η| is O(R−2).

Now scale the metric ωR,Y by a factor R−2 (i.e. we scale lengths by a factor

R−1). The sphere rY =
√
R in Y is then isometric to a small sphere of radius

R−1/2 about each singular point in X. Take 16 copies of Y , cut out 16 of
these balls about the singular points, and glue in the corresponding region in
the copies of Y . The result is a Kahler metric ω0 on the complex manifold Z,
which depends on the parameter R. (This parameter can be described more
invariantly in terms of the Kahler class. ) Our task is to deform this metric—
the “approximate solution”—to a genuine Calabi-Yau metric on Z, once the
parameter R is sufficiently large.

3 The gluing argument[2]

3.1 Set-up

We want to treat our problem using the “cylindrical ends” theory and to do this
we make a conformal change. The basic point is that C2 \ {0} is conformally
equivalent to the cylinder S3 ×R. However the metric on the cylinder is not
Kahler. So consider in general a Kahler metric ω and a positive real function
h on a complex surface and the conformally equivalent metric Θ = h−2ω. We
write dµ for the volume form of the metric Θ. Let Q be the differential operator

Qf = hD(h−1f).

Notice that Q is not changed if we multiply h by a constant. Set

�f = (Qf ∧Θ)/Θ2.

Then we have
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Lemma 1 �f = ∆Θf+V f where V = h3∆ω(h−1) and we are writing ∆Θ,∆ω

for the Laplace operators of the two metrics.

To see this, suppose fmg have compact support and write,∫
�fgdµ =

∫
hD(h−1f) ∧ gΘ =

∫
D(h−1f)(h−1g)ω.

Now apply Stokes’ Theorem and the fact that ω is closed to write this as

−2i

∫
∂(h−1f)∂(h−1g) ∧ ω.

Some further manipulation, which we leave as an exercise for the reader, shows
that this is equal to ∫

(∇f,∇g) + V (fg)dµ,

(where the inner product is computed using Θ) with the stated function V .

The conformal equivalence the the flat metric Ω on C2\{0} to the cylindrical
metric corresponds to h = r. We then have

∆Ωr
−1 = r−3 ∂

∂r
(r3 ∂r

−1

∂r
) = r−3,

so in this case V = 1.

Now return to our manifold Z with the Kahler metric ω0 depending on the
parameter R. We have a function rY on each copy of Y . Let rX be a positive
function on X which, in a fixed ball about each singular point, is equal to the
distance to that singular point. There is then a function h on Z equal to rX
on the “X-side” and to R−1rY on the “Y -side”. (Since we glued the metrics on
the sphere where rY = R1/2, rX = R−1/2.) The hermitian metric Θ0 = h−1ω0

contains a long cylinder. More precisely there is a region in Z which we can
identify with a cylinder P 3×(−T, T ) where P 3 = S3/±1 and T is approximately
(logR)/2. On this cylinder the co-ordinate t ∈ (−T, T ) is logR1/2h. The metric
Θ0 is precisely cylindrical on the part of the cylinder t ≥ 0 and is approximately
cylindrical on the region t ≤ 0. We can think of Θ0 as being obtained in the
following way. Define the Hermitian metric ΘX = r−1

X ωX on X: this has 16
cylindrical ends. Now take the metric ΘY = r−1

Y ωY on Y . This is a metric with
an asymptotically cylindrical end. Now “cut-off” the metric ΘY at a distance
T/2 down the end, to make it exactly cylindrical, and perform the “connected
sum” construction considered before (except, of course, that we have 16 copies
of Y ). This “cutting off” is exactly what we have specified above, but we are
now viewing it in a slightly different way. We have a differential operator � on
Z which is equal to ∆Θ0

+ V where V is equal to 1 in the region t > 0 of the
cylinder can be supposed to be close to 1 on the region t < 0. Again, we have
corresponding operators on the complete manifolds X,Y with asymptotically
tubular ends. The point of all this is that we can apply our general analytical
theory to the operator �.
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3.2 The proof

Everything is now in place to proceed with the proof. We suppose our metric
ωX is chosen so that ω2

X = χ ∧ χ. We seek a function φ on Z and λ > 0 such
that

(ω0 +Dφ)2 = λχ ∧ χ

which is to say

(ω0 +Dφ)2 = λ(1 + η)ω2
0 ,

Recall that η is defined as ω2
R,Y = (1 + η)−1ω2

Y . Consider the function η as
a function on Z in the obvious way. In the cylindrical picture η is supported on
a band |t| ≤ log 2 say (or, really, 16 such bands, one for each gluing region). We
have |η| = O(R−2) and it is easy to see that the same holds for all derivatives
of η. So for any k the L2

k norm of η is O(R−2). Now write φ = hf and express
the equation in terms of Θ0 = h−2ω0. We get

(Θ0 + h−2D(hf))2 = λ(1 + η)Θ2
0.

Expanding the quadratic term and rearranging, this is

�f + h−3Q(f)2 = h3(λ(1 + η)− 1).

The problem here is that h is very small on the “Y -side”, in fact O(R−1),
so the co-efficient of Q(f)2 is very large. To deal with this, set f = R−3g. So
we have an equation for the pair (g, λ) which is

�g + (Rh)−3Q(g)2 = (Rh)3(λ(1 + η)− 1).

Now (Rh)−1 is bounded (along with all its derivatives). The differential
operator Q has co-efficients which are bounded, along with all derivatives inde-
pendent of R. We will solve the equation for g in the Sobolev space L2

5. Then
our multiplication L2

3 × L2
3 → L2

3 implies that

‖(Rh)−3(Q(g1)2 −Q(g2)2)‖L2
3
≤ C‖g1 − g2‖L2

5

(
‖g1‖L2

5
+ ‖g2‖L2

5

)
.

Also since L2
3 ⊂ C0, a small solution g in L2

5 will define a positive form. To

be precise, small enough so that C
(
‖g1‖L2

5
+ ‖g2‖L2

5

)
≤ 1 so we are able to

apply contraction argument. The argument works as the following:
Suppose � is invertible (which is not true but we’ll see it soon that the kernel

of � on Z is determined) and C((Rh)3(λ(1 + η)− 1) < 1
2 ) and consider solution

of

�w + (Rh)−3Q(g)2 = (Rh)3(λ(1 + η)− 1).

for given g which satisfies C‖g‖L2
5
< 1

2
So for different solution w1, w2 with respect to g1, g2, we have
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‖�(w1 − w2)‖L2
3

= ‖(Rh)−3(Q(g1)2 −Q(g2)2)‖L2
3

≤ C‖g1 − g2‖L2
5

(
‖g1‖L2

5
+ ‖g2‖L2

5

)
≤ ‖g1 − g2‖L2

5

By contraction argument, there exists g solves �g+(Rh)−3Q(g)2 = (Rh)3(λ(1+
η)−1). So the problem reduces to solving the linearised equation once we check
that the starting point is within the compact set C‖g‖L2

5
≤ 1

2 . That is to check
whether we can make

(Rh)3(λ(1 + η)− 1)

small enough. Since η is supported in a band of fixed width in the middle of
the cylinder and on this band Rh is O(R−1/2). Since η is O(R−2) we see that
(Rh)3η is O(R−1/2) << 1. The same holds for all derivatives.

It is time to examine the linearised problem which, by our general theory,
reduces to considering the kernel of the operator � over the complete manifolds
X,Y .

By the definition of �, a function f satisfies �f = 0 if and only if ∆ω(h−1f) =
0. Consider first f on Y . Then if f tends to zero at infinity the same is true
a fortiori for r−1

Y f and if ∆ω(r−1
Y f) = 0 the function must vanish by the max-

imal principle. So there is no kernel of � on Y . Similarly, a function in the
kernel of � on X corresponds to a harmonic function, in the flat metric, which
is o(r−1

X ) at the singularities. Since the fundamental solution of the Laplacian is
4 dimensions is O(r−2) the only possibility is that this function is constant. So
there is a 1-dimensional kernel of � on X, spanned by the function rX . Indeed
there is obviously a kernel of � on Z, spanned by the function h. Thus we
are in a slighly more complicated situation than that envisaged before, but the
same argument shows that we can invert � on Z uniformly “modulo h”. That
is there is a uniformly bounded operator P and a linear functional π such that

ρ = �P (ρ) + π(ρ)h.

This fits in with the fact that we have an additional parameter λ in our
problem. Going back to the Kahler picture we know that the metrics ω0 and
ω0 +Dφ on Z have the same volume. This goes over to the identity∫

h(�g + (Rh)−3Q(g)2)dµ = 0,

for any g. Thus the parameter λ is determined by η through the equation

λ

∫
Z

(1 + η)h4 dµ =

∫
Z

h4 dµ.

We define λ by this formula, so λ = 1 + O(R−4), since h = O(R−1/2) on the
support of η. With this value of λ we solve the nonlinear equation “modulo h”
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by the inverse function theorem. That is, we solve the equation for (g, τ), where
τ is a constant,

�g + (Rh)−3Q(g)2 = (Rh)3(λ(1 + η)− 1) + τh.

Now taking the L2 inner product with h we see that in fact τ = 0 and we have
found our Calabi-Yau metric.

4 Mclean’s theorem

4.1 Deformations of compact SL m-folds

The deformation theory of special Lagrangian submanifolds was studied by
McLean [6, §3], who proved the following result in the Calabi–Yau case.

Theorem 1 Let N be a compact SL m-fold in an almost Calabi–Yau m-fold
(M,J, ω,Ω). Then the moduli space MX of special Lagrangian deformations of
N is a smooth manifold of dimension b1(N), the first Betti number of N .

We now give a partial proof of Theorem 1 following [4]. We start by recalling
some symplectic geometry, which can be found in McDuff and Salamon [7].

Let N be a real m-manifold. Then its tangent bundle T ∗N has a canonical
symplectic form ω̂, defined as follows. Let (x1, . . . , xm) be local coordinates
on N . Extend them to local coordinates (x1, . . . , xm, y1, . . . , ym) on T ∗N such
that (x1, . . . , ym) represents the 1-form y1dx1 + · · · + ymdxm in T ∗(x1,...,xm)N .
Then ω̂ = dx1 ∧ dy1 + · · ·+ dxm ∧ dym.

Identify N with the zero section in T ∗N . Then N is a Lagrangian subman-
ifold of T ∗N . The Lagrangian Neighbourhood Theorem [7, Th. 3.33] shows that
any compact Lagrangian submanifold N in a symplectic manifold looks locally
like the zero section in T ∗N .

Theorem 2 Let (M,ω) be a symplectic manifold and N ⊂ M a compact La-
grangian submanifold. Then there exists an open tubular neighbourhood U of the
zero section N in T ∗N , and an embedding Φ : U →M with Φ|N = id : N → N
and Φ∗(ω) = ω̂, where ω̂ is the canonical symplectic structure on T ∗N .

In the situation of Theorem 1, let g be the Kähler metric on M , and define
ψ : M → (0,∞) by

ψ2mωm/m! = (−1)m(m−1)/2(i/2)mΩ ∧ Ω̄, (1)

Applying Theorem 2 gives an open neighbourhood U of N in T ∗N and an
embedding Φ : U → M . Let π : U → N be the natural projection. Define an
m-form β on U by β = Φ∗(Im Ω). If α is a 1-form on N let Γ(α) be the graph
of α in T ∗N , and write C∞(U) ⊂ C∞(T ∗N) for the subset of 1-forms whose
graphs lie in U .

Then each submanifold Ñ of M which is C1-close to N is Φ(Γ(α)) for some
small α ∈ C∞(U). Here is the condition for Ñ to be special Lagrangian.
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Lemma 2 In the situation above, if α ∈ C∞(U) then Ñ = Φ
(
Γ(α)

)
is a special

Lagrangian m-fold in M if and only if dα = 0 and π∗
(
β|Γ(α)

)
= 0.

proof, By definition, Ñ is an SL m-fold in M if and only if ω|Ñ ≡ Im Ω|Ñ ≡ 0.

Pulling back by Φ and pushing forward by π : Γ(α)→ N , we see that Ñ is special
Lagrangian if and only if π∗

(
ω̂|Γ(α)

)
≡ π∗

(
β|Γ(α)

)
≡ 0, since Φ∗(ω) = ω̂ and

Φ∗(Im Ω) = β. But as ω̂ is the natural symplectic structure on U ⊂ T ∗N we
have π∗

(
ω̂|Γ(α)

)
= −dα, and the lemma follows.

We rewrite the condition π∗
(
β|Γ(α)

)
= 0 in terms of a function F .

Definition 1 Define F : C∞(U) → C∞(N) by π∗
(
β|Γ(α)

)
= F (α) dVg, where

dVg is the volume form of g|N on N . Then Lemma 2 shows that if α ∈ C∞(U)
then Φ

(
Γ(α)

)
is special Lagrangian if and only if dα = F (α) = 0.

We compute the expansion of F up to first order in α.

Proposition 5 This function F may be written

F (α)[x] = −d∗
(
ψmα

)
+Q

(
x, α(x),∇α(x)

)
(2)

for x ∈ N , where Q :
{

(x, y, z) : x ∈ N , y ∈ T ∗xN ∩ U , z ∈ ⊗2T ∗xN
}
→ R is

smooth and Q(x, y, z) = O(|y|2 + |z|2) for small y, z.

proof. The value of F (α) at x ∈ N depends on the tangent space Tx′Γ(α),
where x′ ∈ Γ(α) with π(x′) = x. But Tx′Γ(α) depends on both α|x and ∇α|x.
Hence F (α) depends pointwise on both α and ∇α, rather than just α. So we
may take

F (α)[x] = −d∗
(
ψmα

)
+Q

(
x, α(x),∇α(x)

)
as a definition of Q, and Q is then well-defined on the set of all (x, y, z)

realized by
(
x, α(x),∇α(x)

)
for α ∈ C∞(U), which is the domain given for Q.

As F depends smoothly on α we see that Q is a smooth function of its
arguments. Therefore Taylor’s theorem yields

Q(x, y, z) = Q(x, 0, 0) + y · (∂yQ)(x, 0, 0) + z · (∂zQ)(x, 0, 0) +O(|y|2 + |z|2)

for small y, z. So to prove that Q(x, y, z) = O(|y|2 + |z|2) we just need to show
that

Q(x, 0, 0) = ∂yQ(x, 0, 0) = ∂zQ(x, 0, 0) = 0

.
Now N = Φ(Γ(0)) is special Lagrangian, so α = 0 satisfies F (α) = 0 by

Definition. Thus F (α)[x] = −d∗
(
ψmα

)
+Q

(
x, α(x),∇α(x)

)
gives Q(x, 0, 0) ≡ 0.
To compute ∂yQ(x, 0, 0) and ∂zQ(x, 0, 0), let α ∈ C∞(U) be small, and let v

be the vector field on T ∗N with v · ω̂ = −π∗(α). Then v is tangent to the fibres
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of π : T ∗N → N , and exp(v) maps T ∗N → T ∗N taking γ 7→ α+ γ for 1-forms
γ on N . Identifying N with the zero section of T ∗N , the image exp(sv)[N ] of
N under exp(sv) is Γ(sα) for s ∈ [0, 1].

Therefore F (sα) dVg = exp(sv)∗(β) for s ∈ [0, 1]. Differentiating gives

dF |0(α) dVg =
d

ds

(
F (sα)

)∣∣∣
s=0

dVg

=
d

ds

(
exp(sv)∗(β)

)∣∣∣
s=0

=
(
Lvβ

)∣∣∣
N

=
(
d(v · β) + v · (dβ)

)∣∣∣
N

= d
(
(v · β)|N

)
,

where Lv is the Lie derivative, ‘ · ’ contracts together vector fields and forms,
and dβ = 0 as Ω is closed and β = Φ∗(Im Ω).

Calculation at a point x ∈ N shows that (v · β)|N = ψm ∗ α, where ∗ is the
Hodge star of g on N . As ∗dVg = 1 and ∗d∗ = −d∗ on 1-forms, then we have

dF |0(α) dVg = d(ψm ∗ α) =
(
∗d ∗ (ψmα)

)
dVg =

(
−d∗(ψmα)

)
dVg.

Comparing this with F (α)[x] = −d∗
(
ψmα

)
+Q

(
x, α(x),∇α(x)

)
shows that ∂yQ(x, 0, 0) = ∂zQ(x, 0, 0) = 0, which completes the proof.
We see thatMX is locally approximately isomorphic to the vector space of 1-

forms α with dα = d∗(ψmα) = 0. But by Hodge theory, this is isomorphic to the
de Rham cohomology group H1(N,R), and is a manifold with dimension b1(N).

To carry out this last step rigorously requires some technical machinery: one
must work with certain Banach spaces of sections of ΛkT ∗N for k = 0, 1, 2, use
elliptic regularity results to prove that the map α 7→

(
dα,dF |0(α)

)
is surjective

upon the appropriate Banach spaces, and then use the Implicit Mapping Theo-
rem for Banach spaces to show that the kernel of the map is what we expect.

The following rxtended Mclean theorem proved by Marshall [3] is the one
we’re going to use later.

Theorem 3 Let
{

(M,Js, ωs,Ωs) : s ∈ F
}

be a smooth family of deformations
of an almost Calabi–Yau m-fold (M,J, ω,Ω), with base space F ⊂ Rd. Suppose
N is a compact SL m-fold in (M,J, ω,Ω) with [ωs|N ] = 0 in H2(N,R) and
[Im Ωs|N ] = 0 in Hm(N,R) for all s ∈ F . Let MF

X be the moduli space of
deformations of N in F , and πF :MF

X → F the natural projection.
ThenMF

X is a smooth manifold of dimension d+b1(N), and πF :MF
X → F

a smooth submersion. For small s ∈ F the moduli space Ms
X = (πF)−1(s) of

deformations of N in (M,Js, ωs,Ωs) is a nonempty smooth manifold of dimen-
sion b1(N), with M0

X =MX.

Here a necessary condition for the existence of an SL m-fold N̂ isotopic to
N in (M,Js, ωs,Ωs) is that [ωs|N ] = [Im Ωs|N ] = 0 in H∗(N,R), since [ωs|N ]
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and [ωs|N̂ ] are identified under the natural isomorphism between H2(N,R) and
H2(N̂ ,R), and similarly for Im Ωs.

The point of the theorem is that these conditions [ωs|N ] = [Im Ωs|N ] = 0
are also sufficient for the existence of N̂ when s is close to 0 in F . That is,
the only obstructions to existence of compact SL m-folds when we deform the
underlying almost Calabi–Yau m-fold are the obvious cohomological ones. The
version we’re going to use is proved by Marshall[3]

Theorem 4 Let (M,J, g,Ω) be a Calabi–Yau manifold and (Ĵ , ĝ, Ω̂) a defor-
mation of Calabi–Yau struction of (J, g,Ω), with common parameter space the
open subset D ⊆ Rm containing 0. Suppose that f : X → M is a compact sub-

manifold which is special Lagrangian with respect to (J, g,Ω) and the (Ĵ , ĝ, Ω̂)
satisfies the following:

[f∗ŵ(p)] = 0

in H2(X) and

[f∗ImΩ̂(p)] = 0

in Hn(X) for each p ∈ D. Let N → X be a normal bundle of f : X → M
and identify N ∼= T ∗X via the bundle isomorphism [gJ If k ≥ 2 then there
exists open subsets

W ⊆ D
W1 ⊆ H1 = {ξ ∈ Ck+1,a(T ∗X) : δgξ = 0}
W2 ⊆ d∗g(Ck+2,a(T ∗X))⊕ d(Ck+2,a(T ∗X))

all containing 0 and a smooth map χ : W ×W1 → W2 with χ(0) = 0 such
that the following holds:

1. Every

ξ = (ξ1, ξ2) ∈W1 ×W2

⊆ H1 ⊕ d∗g(C
k+2,a
T )⊕ d∗(Ck+2,a(T ∗X))

= Ck+1,a(T ∗X)

∼= Ck+1,a(N)

gives rise to a submanifold fξ : X →M of class Ck+1,a;

2. For all ξ ∈ (ξ1, ξ2) ∈W1 ×W2 and p ∈W we have

[fξ : X →M is special Lagrangian wrt to (J(p), g(p),Ω(p))]⇐⇒ [ξ2 = ξ(p, ξ1)]

and consequently χ(W ×W2) ⊆ d∗g(C∞(T ∗X))⊕ d(C∞(T ∗X))
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3.

M := {(p, ξ) = (p, ξ1, ξ2)

fξ : X → M is a special Lagrangian wrt (J(p), w(p),Ω(p))}

is a smooth manifold with dimension dimMp = b1(M)s. Moreover,

W ×W1 →M

(p, ξ1) 7→ (p, ξ1, χ(p, ξ1))

is a diffeomorphism, and the inclusion is a smooth manifold.

4. Given p ∈W

Mp := {ξ = (ξ1, ξ2) ∈W1×W2 : fξ : X →M is a special Lagrangian wrt (J(p), g(p),Ω(p))}

is a smooth manifold with dimension dimMp = b1(X). Moreover,

W1 →Mp

ξ1 7→ (ξ1, χ(p, ξ1))

is a diffeomorphism and the inclusion Mp →M is a smooth manifold.

5. Given ξ1 ∈W1

Mξ1 := {(p, ξ2) ∈W×W2 : fξ1+ξ2 : X →M is a special Lagragian wrt (J(p), g(p),Ω(p))}

is a smooth manifold with dimension dimMξ1 = m. Moreover,

W →Mξ1

p 7→ (ξ1, χ(p, ξ1))

is a diffeomorphism, and the inclusion Mξ1 →M is a smooth submanifold.

5 Existence of Special Lagrangian Sphere

5.1 Special Lagrangian sphere

The singularities on Kummer surface(The Y part mentioned in previous sec-
tion) is 16 ordinary double point. We’re going to show that disingularization
of ordinary double point contains a special lagrangian sphere with respect to
Eguchi-Hanson metric. For a more detailed discussion on disingularization of
ordinary double point, we refer to [5].

Consider cotagent bundle of n-sphere

T ∗Sn = {(x, ξ) ∈ Rn+1 × Rn+1, ‖x‖ = 1, x· ξ = 0}
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There exists a diffeomorphism from T ∗Sn to the affine quadric

Qn = {z ∈ Cn+1, ‖z‖ = 1}

given by

f(x, ξ) = xcosh(|ξ|) + i
sinh(|ξ|)
|ξ|

ξ

Consider the zero section of the affine quadric, i.e. the real sphere. The
affine quadric is a calabi-yau manifold with respect to Stenzel metric.[1] which
is of the form:

ω = i∂∂̄f ◦ τ

where τ is the restriction of the function ‖z‖2 = Σn+1
j=1 |zj |2 to Qn. And f ◦ τ

is the Ricci-flat Kahler potentials which satisfies the ODE[1]

x(f ′(x))n + (f ′(x))n−1f ′′(x)(x2 − 1) = c > 0

The Kahler form ω = i∂∂̄f ◦ τ = dα is exact, where

α = −Im∂̄f ◦ τ
= f ′(τ)α0

and (α0)z(v) = 〈Jz, v〉. The holomorphic volume form Ω on Qn is given by

Ω(v1, ..., vn) = 2Ω0(z, v1, ..., vn)

for all z ∈ Qn, and v1, ..., vn ∈ TzQn, where Ω0 = dz1 ∧ ... ∧ dzn+1 is the
standard holomorphic volume form on Cn+1

Since α|Sn = 0 so ω|Sn . Also since ImΩ contains dyi terms and the tangent
space of Sn is spanned by ∂

∂xi . We conclude that Sn is a special Lagrangian
submanifold of T ∗Sn

Recall from the end of section 3. The ”new” Kahler form is of the form
w0 + Dφ and since the complex structure remained unchanged so the ”new”
holomophic volume form is the original holomorphic volume form times a con-
stant. They both satisfy the condition of applying the generalized mclean’s
theorem:

[f∗ŵ(p)] = 0, [f∗ImΩ̂(p)] = 0

Now we’re ready to show that this real two dimensional sphere is the special
Lagrangian sphere we’re looking for on Kummer surface.
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5.2 Conclusion

We know that the real 2–sphere is special Lagrangian with respect to Eguchi–
Hanson metric ω2

Y = (1 + η)ω2
0 and we can deform it to a Calabi–yau metric

ω0+Dφ on Kummer surface, while the complex structure J remained unchanged.
Recall the calabi-yau matric on Kummer surface is of the form ω0 + Dφ,

φ = hR−3g where h is defined as rX on X and R−1rY on Y ,
and g is the solution of

�g + (Rh)−3Q(g)2 = (Rh)3(λ(1 + η)− 1).

With the convention C‖g‖L2
5
≤ 1

2 , where C is chosen so that

‖(Rh)−3(Q(g1)2 −Q(g2)2)‖L2
3
≤ C‖g1 − g2‖L2

5

(
‖g1‖L2

5
+ ‖g2‖L2

5

)
.

So we can choose R large enough to make |φ| small enough.
By section 3 we know that �f = ∆Θf +V f where V = h3∆ω(h−1) is 1 and

approximate 1 on each part of Kummer surface. Thus ‖�g‖Lp
k
≤ Cp,k‖g‖Lp

k+2

following the same strategy as proposition 4 in section 2.1. Now expand � we
get

�f = hD(h−1f) ∧ (h−2ω)/(h−2ω)2

The leading term (second derivative of f) is of the formDf∧(h−2ω)/(h−2ω)2.
Compare with the leading term of Dφ = D(hf) which is hDf . So we know that
‖Dφ‖L2

k
≤ Cp,k‖φ‖L2

k+2
with C doesn’t depend on the operator D

Thus by the generalized Mclean’s theorem given by Marshall[3] we can see
that Kummer surface has special lagrangian sphere.
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